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O R B I T A L L Y  Q U A N T I Z E D  V O R T E X  S T A T E S  O F  L A S E R  

R A D I A T I O N  A N D  P H O T O N I C  S U P E R F L U I D I T Y  

V. I. Kruglov UDC 535.36 

The existence of the phenomenon of photomc superfluidity in certain laser systems is demonstrated as is the 

identity of orbttally quantized excitations of the photonic Bose condensate to vortex lines in superfluid He 

and Abrikosov' s vortex lines in type-ll superconductors. 

The problem of propagation of spiral laser radiation in various nonlinear media has been studied in detail 

in recent years I 1-7 ]. The main difference of spiral light beams from conventional laser radiation is that the,,, have 

a tubular intensity distribution, and the electric field rotates about the axis of propagation of the radiation. As 1 

have shown earlier, this i,~ ;~sseciated with a new characteristic of spiral radiation, the topological charge m = 0, 

• •  . . . . .  The case of m = 0 corresponds to a conventional laser beam. The angular rotation velocity ~ of the 

electromagnetic field is determined by the frequency of the light ~ and the topological charge m: f2 = w./m, where 

m ~ 0 .  

Another important feature of spiral beams propagating in the self-waveguide regime is the fact that 

diffraction divergence is completely absent. This unusual, at first glance, property is connected with the optical 

nonlinearity of the medium. For certain types of nonlinear media, when the power integral of the spiral beam 

exceeds the threshold value, nonlinear interaction with the medium can lead to compression of the light beam and 

total compensation of diffraction phenomena. Spiral optical beams are in many ways similar to such macroscopic 

coherent phenomena as superfluidity and superconductivity, which has been stated several times in our previous 

works [4-6 ]. Investigation of the problem shows thai spiral laser radiation propagating in a nonlinear medium is a 

rotalionally quantized excitation of the superfluid photonic Bose condensate. 

On the other hand, it is known that vortex lines excited in superfluid He II and Abrikosov's vortex threads 

in type II superconductors are orbitally quantized excitations of the Bose condensate. Thus, we come to the 

conclusion that the three above-mentioned phenomena are physically identical. It should be noted, however, that 

identity of their physical mechanism does not exclude certain distinctive features inherent in each of them. In 

particular, the Bose particles in all three cases are different. In the case of super'fluidity, the Bose condensate 

consists of Cooper pairs. 

Another important distinctive feature of the photonic Bose condensate is that the particles have zero mass, 

and, therefore, they all move with a velocity close to the speed of light in vacuum. In what follows, we will show 

that the topological charge m of a spiral beam [1 I is actually a quantum number that characterizes the rotational 

state of individual photons of the spiral radiation field. 

Quantized Field of Laser Radiation and the Theory of Superfluidity. We present a theory of propagation 

of spiral laser radiation in a nonlinear medium in quantum-hydrodynamic form. Let us write the strength of the 

electric field E in the following form: 

1 
E =  E+ + E_ ,  E .  : - ~  ~ e~/-~exp(-  t~ot), (1) 

,l. = 0 ,  +_. I 

E = E~_ , ea = ~ (n I + fftnz), e 0 = n3, (2) 
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where e-z- are  c i rcular  polar izat ion vectors. When free charges a re  absen t  the wave equation for the t ransverse  electric 

field in a non l inear  medium takes the form 

V2E+ 

where 

2 (e (I FI 2) E+) = 0 
c Ot 2 

(3) 

(IFI 2) = ~, 2s 2 2 ~2~ IFI  , IFI  = Y~ IF~I , (4) 
s = 0  3. 

and it should be noted that the condit ion VE+ = 0 is approximate ly  satisfied.  Let us introduce the following functions 
ko2: 

qj;. = 1 F ; ,  . -  2 = +_ 1, (5) 

which, as will be shown in what follows, can be t reated as wave functions of the collective photonic state.  Indeed,  

it follows from (5) that the energy densi ty  W of the e lectromagnet ic  field of the radia t ion has the form 

W = ~  ~ N ) ,  Na = [qsal 2 (6) 
,~= +_I 

Based on Eq. (3), in an approximat ion  of slowly varying ampl i tudes  F;., we arrive at the Schrod inger - type  equation 

~2 v 2 + U ( N ) ,  (7) o 
t~  Ot tls;~ = H (N')  tts,t , H (N) - 

2M o 

~OA 
U ( N ) -  2e 0 e ( a N ) ,  N =  ~ N 2,  (8) 

) . = - + l  

where the effective mass  M 0 is in t roduced using the re la t ionship  ~ = M o  c2, c O = c/~r~eO . In accordance  with 

quantum mechanics ,  we de te rmine  the flux dens i ty  J~ and the velocity v,~: 

t-h ( q l ) V ~ ;  _ q l ; V q j ~  ) v;~ = g - t j ) .  : 7i J~. = ~ . . , ~ V O ) ,  (9) 

where q3~ = ~ exp (iO, 0 '  Using Eq. (9) we can represent  the wave Eq. (7) in hyd rodynamic  form: 

0 
Ot N). + V (N,~v;.) = 0 ,  ( lO) 

+, 21 o-t ~, ~ -~ v~ = o ,  ( l l ) 

/:i 2 
1 V 2 ~/ N,~ (12) ~Q = - -  (U 0 (N).) + U (N)) , U 0 (N),) = _ _  . 

M 0 2M 0 ~/N,I 

It should be noted that  Eq. (11) can also be writ ten in a form that  coincides with the hyd rodyna mic  equat ion of 

motion of an ideal  fluid 

o 1 v (u  o (N~) + U (N)).  (13) 0t v2 + ( r a Y )  v i = - M--o 

In tegra t ion  of Eq. (13) leads  to an equation for the velocity potent ial  O,~: 
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O 1 2 (14) 
7i -~ 01 + -~ Movl + Uo (NI ) + U (N) = O . 

It is in teres t ing  to note that  Eqs. (10)-(12) coincide with the Landau equations for the superf lu id  component  of He 

II in the theory  of superf lu id i ty  [8 1. Equations (10)-(14) also coincide with the hyd rodyna mic  form of the equations 

of the theory of type-I I  superconductors  19, 10 ]. In addi t ion,  the theorem of conservation of velocity circulation 

follows from (13) : 

0 
Dj.F 2 = 0 ,  D). = ~- + v).V~, P 2 = ~ v~. d l ,  (15) 

c2 

where ca is an a rb i t r a ry  closed l -connec ted  fluid contour. Calculation of the circulation F:. for a spiral  laser  beam 

[ I - 7 ]  leads to the following result: 

Vi = ~ , ' . ;dl=- ~ m ; ,  m:. = 0 ,  • 1, • 2 . . . . .  (16) 

where we used the defini t ion of velocity (9). Here c:. is a positively or iented l -connecled  closed contour  containing 

the z axis.  Relat ion (16) coincides exact ly with the quantization rule for velocity circulation in the theory of 

super f lu id i ty  18, 9]. It should  be noted that quantizat ion condit ion (16) also holds in the theory  of t ype - l l  

superconductors ,  and v i in this case has the meaning of the canonical velocity of Cooper  pairs 18, 9]. It can be 

easily seen that relation (16) is also equivalent to the Bohr-Sommerfeld  quanlizat ion equation: 

r p:dq). = Z-rT~m:.,  m:. = O, - + I, _* , ,  ~ . . . ,  (17). 
c:, 

where Pi = M0v.t. and  q:.(d~. = dl, :, = • I) are  canonical momenta  and coordinates .  It follows par t icu lar ly  from Eq. 

(I7) that the quant i ty  7~m). is the projection of the orbital  moment of photons of the spiral  laser  beam onto the 

quantizat ion axis z. Thus,  the topological charge rnl of the spiral  laser  beam coincides with the orbi ta l  quantum 

number  of photons of the vortex electromagnet ic  field. According to (7), (8), and (16) the tangent ia l  projection of 

the velocity v,t and  the angular  velocity f2,t of the spiral  laser  beam are  as follows: 

~m 2 co (18) 
(v:.)r = j~ior,  Q:" - m) . '  

where rn~. ;~ 0. It should be noted that the formula for (v:.): coincides exact ly with the cor responding  results  of the 

theory of super-fluidity and superconduct ivi ty.  Taking into account Eq. (18) and results  of [6], we calculate the 

rotat ional  energy ER of the spiral  beam 

2 

d_d_ER_ c ~. Jm) l~c:(z)Z:, l:=ff IF) l~dxd),. (19) 
dz 8~co 2 2= +_1 

Similar ly,  we find an expression for the projection of the angular  moment Lz onto the z axis of the spiral 

laser beam: 

d E 
d~ L~ - 8x~, ~ m:.6." (20) 

2=*_1 

We consider  as an example  the case when the intensi ty  dis t r ibut ion of the laser beam does not depend  on z. As 

has been shown in [2-6 ], under  cer ta in  condit ions this regime of propagat ion of spiral  laser  rad ia t ion  is actual ly 

realized.  Let the spiral  beam have the spirality/1. = +1. Then the solution of Eq. (7) has the form 

W 4_ 1 (r, ~o, t) = f m  (r) exp [i (rage + kz  - wt + (Do) I. (21) 
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Subs t i tu t ing  (21) into (7) and  taking into account that W - t  = 0 we arrive at an equation for the rea l -va lued  

ampl i tude  fro(r) [1 ]: 

where 

2 2 

r --dr r Ln - 7 f r o  + ~c (r ( ) - t0) fm 
= o ,  (22) 

a/,.  2 , (23) e = t0 + c2 + c4a fm + . . . .  m = _+ 1, +_ 2 . . . . .  

If we retain only the first two terms in expansion (23), Eq. (23) will coincide with the Ginzburg-Pi taevsk i i  equation 

for quant ized vortex lines in the theory of superf luidi ty  of a nearly ideal Bose condensa te  at zero t empera tu re  [8 ]. 

It should be noted that Eq. t22) also descr ibes  Abrikosov 's  quantized vortex threads  in the vicinity of the s ingular i ty  

line [ I 0 I. 

Orbi ta l  Spiral  S ta tes  of the Rotat ional ly Excited Photonic Bose Condensate .  The above results demons t ra te  

that the theory of propagahon of spiral laser beams in a nonlinear medium is formally identical to the theory of 

superf lu idi ty of He II and the theory of type-If superconductors, This suggests that a spiral laser beam is an 

orbi tal ly quantized vortex excitation of the Bose condensate. In order to prove this statement, v:e should first define 

the photonic stales of the radiation field corresponding to orbital excitation of vacuum I 11, 12 ]. Single-photon states 

of the radiat ion field are described by wave Eq. (3) at t = e 0 = consI and have the form 

N 1 
E+ = ~ F N exp ( -  twt) , VE+ v = 0 ,  (24) 

where N is the complete  set of photon quantum numbers .  From (3) and (24) we have an equation for the ampl i tude  

FN: 

V2FN + k2FN = 0 ,  VF N = 0 ,  (25) 

where  k = V ~ o w / c .  It should  be noted that  the set of photon quantum states is de te rmined  by a s y s t e m  of l inear  

eigenvalue equat ions:  

SzFN T = ) tFNT,  PzFN = TttCFN, LzFN T = 7imFNT " (26) 

Here Sz is the photon polar izat ion opera tor ,  Pz and Lz are  the opera tors  of theproject ions of the photon momentum 

and orbi tal  moment  onto the z axis: 

S : =  , P : =  - t ' 8 0 ~ . ,  
0 (27) 

( o o') o 
L z :  - tg~ X c ~ y -  Y T~ x = -i'fiO'- 7 -  

Here FNT iS the t ransverse  component  o1: the vector FN F v  = FNI  + FNI., FNT n = 0, where n is a unit vector 

d i rec ted  a l o n g t h e  z axis.  It follows from (26) that the complete set of quantum numbers  of the in t roduced photonic 

s tates  is N = (;t, w, x, m),  where .a. is the photon spiral i ty ,  ~ is the photon energy,  ~c is the projection of the 

momentum onto the z axis,  and-t im is the projection of the orbital  moment onto the z axis. [t can be shown [11, 

12] that the solut ion of Eqs. (25) and  (26) has the form: 

~'~ e~ (0, ,:,') (28) 
F u (r) = A N f - -  exp [i (kn (0, ~,') r + (m + ).),p') 1 d ,p ' .  

o 

Here we used the following paramet r iza l ion  of the c i rcular-polar iza t ion vectors e,t(0, ~o) 
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and it should be noted that 

cos 0 ] 
e x p ( - b l ~ o )  ~ /3. c o s 0  | , (29) 

(o, = v I + cos [ _  sin Oe" J 

n (0, ~o) = sin 0 cos ~on~ + sin 0 + sin ~on 2 + cos On 3 . 

In tegrat ion in (28) leads to an expression for the posi t ive-defini te  part of the electric field of orbi ta l  spiral  photonic 

s tates  [11, 12]: 

m ( ,  ~ l , , ~ + ~ - z - ~ o 0  - I ( 3 0 )  
E+ (r, ~p, z, t) = .~ i).xk J,,, (qr) . 

- tJ'q k - - ~ f ) ~  jm+t. (qr) 

Here C N = C O l , S t ,  K and q arc the longiludinal  and t ransverse wave numbers:  

x =  k cos O , q = k sin O , k 2 = K2 + q2 , k - 
c" 0 

Jm(qr )  are Besssel functions of the first kind, 0 <_ 0 < Jz is the angle of the spherical  sys tem of coord ina tes ,  rn = 

0, +_1, _+2 . . . .  is the orbital quantum number  of the photon. 

The wave function of the photon (30) also satisfies the system of cigcnvalue equations:  

0 N 'V N N 
tT~ Ot E+ = ~oE'+ , PzE+ -- PucE , 

MzE =~(a+,,,)E+, K;E =aE N, 

(31) 

where 

/Z i 0) 
M z = L z + PiS z , K+_I = 0 0 �9 

0 +-1 

The vortex state of the laser  radia t ion  in a nonl inear  medium can be represented  in the form of a wave package of 

photonic s tates  (30) with fixed spiral i ty  ,,l and orbital  quantum number  m. Taking into account (30), and  the fact 

that sin 0 << 1, we can neglect the longi tudinal  component  of the field, which leads to the following express ion:  

%. ei(mq,_tot ) ~ I 
E+ = -~  f f G;. m (p, Ix, t) Jm (rp ~ ( - L ~ )  exp ( ippz)  dpdp  . (32) 

o o 
/ x  

Here ,u = cos 0, and G;.m(p, P ,  t) is a function de te rmined  by the mean value of the annih i la t ion  opera to r  a;ml, m of 

an orbi tal  spiral  photon of the spiral  beam. Expanding exp (mpz )  into a Bessel series,  we can write wave package 

(32) for a complex ampl i tude  F;. as follows: 

F;. ( r ,  ~o, z, t) = e imr ~ 7 F~Xrn (r, p, t) Jn (Pz) dP , (33) 
n = - ~  0 

: t /2  
F~rn (r, p, t) = i n- f G2r n (p, cos O, t) Jm (rp sin O) exp ( -  inO) sin OdO . 

o 

(34) 

Inasmuch as photons of the spiral  beam have vanishing energy dispers ion,  the complex-va lued  ampl i tude  

F~. can be writ ten as follows: 
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I 

F~, (r, ~,  z, t) = e 'me f g,tm (,u, t) Jm (rk ~ s  exp (i, ukz )  dt~ . 
o 

Expansion (33) in this case is t ransformed to a Neumann  series: 

1 o ~ ,n (r, t) Jn (kz), F 2 (r, 79, z, t) = -~ C). m (r, ~o, t) Jo (kz) + Ctm 79, 
n=l 

where 

(35) 

(36) 

/2 - -  '1 
c~j,, (,, 79, ,1 = e• {~,~o) {/~.';,, {,, t} + ( -  1) 7).,,, (,, f}), (37) 

,-r/2 
{//i,: (r, t) = i n f g),,, (cos O, t) J ,,, (rk sin O) exp ( -  toO) sin OdO . (38) 

{} 

It is well known th,.l! only periodic funclions can be expanded  into Ncumann series,  Lind, therefore,  the function 

F). is periodic with respect to z. This  fact is in complete agreement  with the theory of self-waveguide propagat ion 

of spiral  laser  beams [2-6 1. In addi t ion,  here we found that the orbital  quantum number  rn coincides with the 

topological charge of the spiral  beam introduced in [1, 2 1. 

Orbi ta l ly  Quant ized Sta tes  of the Photonic Condensa te  in an Active Laser  Medium. We cons ider  ro t , t i ona l  

vortex s ta tes  of the e lec t romagnet ic  field in an active laser  medium on the basis of the Maxwell-Bloch sys tem of 

laser  equations,  in an approximat ion  of slowly varying ampl i tudes  the system can be written as follows: 

0 
O E =  ~ A E - c r ( l  + i&0) E +  F ,  ~ F =  - y ( 1  - td0) F +  7QE 
Ot 

(39) 
0 r �9 
aT Q = - fl (Q - Qo) - (EF* + FE  ) .  

Here,  for convenience,  all the var iables  and constants  are  represen ted  in d imensionless  form. Complex-va lued  

functions E and  F descr ibe  the electric field and polar izat ion of the active laser  medium,  Q is the populat ion 

inversion,  Y and  fl are  the t ransverse  and logitudinal  re laxat ion t imes of the medium,  60 is the de tun ing  from the 

a tomic- t rans i t ion  frequency,  and A is the Laplace opera tor  in polar  coordinates :  

2 
A E = r  - -  r - - E  + r  2 

Or Or O~ 

Pumping and losses of radia t ion  in the laser are  de te rmined  by the parameters  Q0 and a.  In what follows, we 

cons ider  a def ini te  type of laser  with boundary  and initial condit ions of the following form: 

0--if-E I = 0 ,  E t=O= E o ( r , ~ o ) ,  F i t = O =  Fo(r ,  79), Q I t = o = Q o  . (40) 
Or r=R 

Here Eo(r, 79) and Fo(r, ,p) are  de te rmined  by fluctuation processes in the laser,  and R is the bounda ry  value of 

the d imens ionless  var iable  r. 

The  s implest  nontrivial  solution of system (39) and (40) at Q0 = const is expressed  by a s ta t ionary  uniform 

dis t r ibut ion:  

E = - 1 - 6 e x p ( i ~ 0 ) ,  ~ > l + 6 0 '  

where 790 = const.  S ingle-vor tex  solutions at a rb i t r a ry  values of the topological charge rn = • 1, +2 ,  •  . . . .  a re  as 

follows: 
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0 (42 )  E =  E m exp ( -  if2mt ) ,  F =  F m exp ( -  iQmt ) , ~ Q = O. 

Subst i tu t ing (42) into (39), we arrive at a nonl inear  equation for eigenfunctions Em and e igenfrequencies  Qm: 

QmEm = - AE m - ct ( t - 6 0 )  E m + 
(1 - 6 m) QoEm 

2 2 '  
1 + c 5 ~ +  IEm[ 

(43) 

where 

~m =dO + --~-/ ' Em (r, ~~ = fm (r) exp [ i (mto + q ' m ( r ) ) l '  (44) 

In accordance with (40), the boundary  condit ions for fro(r) and q),n(r) are as follows: 

i ) = 0  = 0  ~rr f,,: (r)' d 
�9 . r = R  . �9 r = R  

Introduct ion of orbital  spiral photonic states (30) makes it possible to represent  the ampl i tude  Era(r, ~) in the form 

of a wave package: 

J 

E m (r, ~o) = exp (trn~o) f g,n (u) J,n (r d u . (40) 
0 

Let us consider  the case when the wave package (46) has low dispers ion with respect to the t ransverse  wave 

numbers  # - k sin 0; then the ampl i tude  fro(r) can be presented  as follows: 

/ m ( r ) = C m J m ( ~ m R ) ,  m = • 1 7 7 1 7 7  . . . . .  (47) 

where/~m is the first positive root of the equation dJm(r) /dr  = 0. The  constant  Cm is de t e rmined  by subst i tut ing 

(47) into (43) and passing to the limit r --,. R. Thus,  using (42), (44), (45), and  (47) we f ind the approximate  

solution 

E (r, ~o, t) = CmJrn (t~m R)  exp [t (m~~ - f2mt + ~m (r)) l , (48 )  

c , , ,  = . I~  ~ (,am) Qo I - c~ , ~,,, = a o + 
+ r  (R)  

The phase ~m(r)  can bc depcrmined  from Eq. (43) with al lowance for (45), (47), and (49). To obta in  an equation 

for eigenfrequencies Qm, one can simply subst i tute  (17) into (43) and pass to the limit r --, 0: 

2 

Q~ + : . 4 . , = ( ~ z + 7 )  3 o + - - ~ ,  . q . , = y ( 6 . , - d o ) .  2 
1 + 3 m R" 

(5O) 

Compar ison of the approximate  analyt ica l  solution (48) at ~m(r) = const with the numerical  solution of the system 

(391 and (40) in the s ta t ionary  regime shows that in the vicinity of resonance  d m =  0 at m = •  +_2, •  the 

solutions coincide with each o ther  up to the accuracy of the numerical  exper iment  [121. Thus ,  in numerical  

calculat ions [12] the analyt ical  (48) and (49) and numerical  solutions coincided to the third decimal  place, and  

the discrepancy was less than 0 .1%.  This  means  that in the vicinity of points 6 m = 0 the vortex s tate  of the laser  

radia t ion,  according to (48) and (49), is actually a condens ta te  of orbi ta l  spiral  photons (30) in the active laser  

medium. It should be noted that vortex states  of the radia t ion  field were cons idered  in [13-15 1. 

Formulas  (41) and (48) can also be expressed  in terms of o rd ina ry  d imens iona l  variables:  
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E +  = e ~ E  o - 1 - 6 e x p  [i (koz  - COot + 0 o )  1,  

E+ = e lEoC,r l  m ~m exp Ii(m~o + t c z - ~ t  + Oo) 1, 

where r, z, and t are  d imens iona l  quant i t ies ,  E0 is a pa ramete r  of the laser  system with the d imens iona l i ly  of the 

electr ic-f ie id s t rength ,  r 0 is the radius  of the active medium of the laser,  ko and K are wave numbers ,  �9 o = const ,  

and dm = 0. Formulas  (51) and (52) obviously express only the waves propagat ing in the positive direct ion of the 

z axis of the active laser medium. In lhe case of a conventional laser,  s imilar  waves also propagate in lhe opposi te  

direct ion.  

Solution (51) holds when R < RI,  where R I is the bifurcation point de te rmined  from (50) at ~Qm = 0 .  When 

R > R l, a t ransi t ion from dis t r ibut ion  (51) to (52) takes place, and it should be notcd that m = _ 1, Wilh passage 

through the bifurcat ion point R~, a frequency shift Au) R can be observed:  

Q"~ (53) 
= c~176 + AcoR' At'OR - f0 

here to is the character is t ic  l ime pa ramete r  of the laser, which is used when the time in the sys tem of equat ions 

(39) is made  dimensionless :  l / l  0 "-~ f. It follows from (50) and (53) that at the points of vortex resonance  c5 m = 0, 

the f requency shift AoJ,~ is descr ibed  by the expression:  

:" 1601 (54) 
A~ R -- 

l 0 

It should be noted that  the ground state of the field in the laser  (51) is of fundamenta l  s ignif icance from 

the viewpoint of the theory being developed here.  Indeed,  this is a superf lu id  photonic state of the Bose condensa te  

that  is c rea ted  in an active laser  medium when R < R 1 and Q 0 / a  > 1 + dg. This  is a ground superf lu id  s ta te  of a 

mul t iphoton  quantum sys tem with all quanta  having equal values of the  wave vector k and  spiral i ty  ,,1.. T h e s e  sates ,  

as is known,  a re  desc r ibed  by plane waves with ra ther  def ini te  normal iza t ion  of the resul t ing wave (51). 

On the o ther  hand ,  the vortex quantum state of the radia t ion  field (52) is completely ident ical ,  from the 

p h y s i c a l  po in t  of view,  to o r b i t a l l y  q u a n t i z e d  vo r t ex  l ines  in the  t h e o r i e s  of s u p e r f l u i d i t y  a n d  type - I I  

superconduct iv i ty  [8-10 ]. Note that the orbi ta l ly  quantized rad ia t ion  (52) cor responds  to the wave package (32) 

with zero d ispers ion  of the Iogitudinal  and  t ransverse  wave numbers  ~c = k cos 0, q =k sin 0 of orbital  spiral  photonic 

s tates  (30). Indeed ,  it follows from a comparison of express ions  (32) and (52) that 

G;~rn (p, !l, t) a).md (p k) 6 ( ( rok) -2  2 �9 = - ! ~ m -  1 + u ) .  ( 5 5 )  

This means  that all orbi tal  spiral  photons of the vortex state (52) are  in the same quntum slate N = (2, co, to, m). 

Therefore ,  we can state that  the superf luid Bose condensa te  (51) can be created under  cer tain condi t ions  

in laser  sys t ems  cons ide r ed  in the presen t  art icle.  Orbi ta l ly  quant ized  exci ta t ions  of the superf lu id  photonic 

condensa te  (51) at resonance  points c5, n = 0 are  desr ibed  with high accuracy by express ion (51) and ,  as has been 

found, are  identical  to vortex lines exci ted in He II and type-I I  superconductors .  Thus ,  we come to the exis tence 

of t ype - l I I  super f lu id i ty ,  namely ,  photonic superf luidi ty .  In this case the self-waveguide propagat ion of the spiral  

rad ia t ion  in non l inear  media  and  the vortex states  of the e lect romagnet ic  field in the active laser  medium represent  

orb i ta l ly  quant ized exci ta t ions  of the superf luid Bose condensa te  with a defini te  orbi tal  quantum number  m = 

___1, +_2 . . . . .  

Index Theorem.  It has been demons t r a t ed  in numerical  exper iments  [121 that,  along with vortex solut ions 

with var ious  topological  charges ,  N - v o r t e x  solutiofis of sys tem (39) and  (40) exist.  The  N-vor t ex  s t a t iona ry  

solut ions of Eqs. (39) and  (40) can be presented  in the following form [161: 
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•] ~ " "" (56) E (r,  ~o, t) = C n m  (t)  z z , 
n=O rn=O 

where z = r exp (t~), z = r exp (-Bo). Since the field strength vanishes at the center of each of the vortices, the 

N-vortex solution has the form [16]: 

N 
E (r, {p, 0 = E0 exp (K (r, ~o, l )) FI (z - zs)"s Cz - "zs/'s, (57) 

s = l  

where K(r ,  So, t) is a total ly defined funct ion that has an expansion over the variables z and ,~ s imi lar  to (56). In 

addi t ion,  v s = const and ."s = const are nonnegative integers in the stat ionary regime, and v s + ,"s > 0. 

It is important to note thai function (56) and (57) is not analytical with respect to z, since the Cauchy- 

Rieman condition is not satisfied. Let us prove that the index of the function E(r, SO, 1) equals the sum of topological 

charges of the vorticcs enclosed by the contour (2 

I ~ m , .  (Sg)  lnd E( r , r  :)l,. =-5T r d{l} = 
C ~ =  I 

Here {I} = arg E{r, SO, t), m s = v s - , u s ,  c is an arbitrary positively directed closed l-connected contour belonging 

to the region r < R, :s (s = 1, 2, ..., n; n < N) are zeros of the function E(r, SO, l) belonging to the region enclosed 

by contour c. In order to prove the theorem we will use a formula that follows from (57): 

,V V ~ N l,[ s 
E - 1 V E =  (e x=,e>,)  ~2 - -  + ( e x -  t%) ~2 ' 

s=l z -  z s s=l ~ - ; : s  
- -  + V K ,  {5g)  

Here ex and ey are unit basis vectors, V = exO/Ox + eyO/Oy. After integration of expression (59) along contour C 

we obtain:  

N N d~ n 
J) E - I V E d s  = E Vs ~ dz + Z Ps ~ - 2~i Z ( V s - P s ) "  (60) 
c s=l c z -  z s s=l c ~ - ~ s  s=t 

Here we took into account that 

VKds = ~ d K = O ,  (61) 
C s 

since K(r,  ,p, t) is single-valued within the region r < R. 

On the other hand,  assuming that f = I EI exp (zc[}), we find that 

1 i 1 I 1 
Z~ti ~) E -  r e d s  = ~-7~/ ~ V In IEI ds +Cd ~ r o d s - - ~  r d,V, 

C C C C 

(62) 

since the function In l e t  is single-valued, and,  consequently, 

Vln ts 
c 

(63} 

With allowance for (62), expression (60) can be presented in the form: 

1 n n 

- ~  ~ d ~  = ~, (v s - l , s )  = ~ ms .  (64) 
C s = l  S = I  

Thus,  the theorem is proved. 

Let Cs be an arbitrari ly oriented l -connected closed contour enclosing only the s-th zero of the function 

E(r,  ~o, t). In this case, according to (64), we find that 
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Subs t i tu t ing  (65) into (64), we obtain 

1 
m s = - ~  ~ d ~ .  (65) 

g~ 

(66) r  Y. r d~.  
C .~= I C s 

We note that express ions  {58) and (66) completely agree with results  of numerical  exper iments  for s ta t ionary  

N-vortex regimes [121. 

F ina l ly ,  we present  the proof of the conservation law for circulation {15): 

c; c) c: c). c). \ - /  

Here c:. is an a rb i t r a ry  1-connected closed fluid contour. In deriving expression (07) we used Eq. (13) and the 

s ingle-va luedness  of the function 1/2v2 - a )  at an a rb i t ra ry  point of spJcc. 

Conclusion.  The exis tence of homogeneous solution r of system of Eqs. (39) and {40} is of fundamenta l  

importance for the theory presented  and is also subs tan t ia tcd  by numerical  exper iments  [12 ]. This  regime takes 

place only when R < RI, where R 1 is the first bifurcation point. When R > RI,  t ransi t ion from regime {51) to 

vortex regime (52) lakes place, and it should be noted that ra = •  The bifircation point RI is found from {50) 

if one sets ~,n = 0: 

R I = ,u 1 

- 1 : 2  

Qodo ad o 
2 

1 + d  o 

(08) 

The  resul ts  of numerica l  calculat ions [12, 16] agree with the analyt ica l  value of (68) for the first bifurcat ion with 

an er ror  of less than 1%. 

The  value of the pa ramete r  R cor responding  to vortex resonance  can also be found from (50) at 6m = 0: 

R = # m  l (a  + y )  l&01 1 - 1 / 2 ,  ~r~ = y  Id01 (69) 

and is reproduced  with high accuracy in numerical  exper iments  112, 161. In addi t ion ,  it can be shown that  the 

power of the ro ta t ing  laser  rad ia t ion  field at the point of the vortex resonance (69) has a max imum and  is 

de t e rmined  by the formula:  

P =  f ds~ f t E l Z r d r -  ~'~7-y) [~-OTO[ - 1 . 
0 0 

This  power, in par t icular ,  is higher  than the power in the homogeneous regime (51). 

As has been shown, the homogeneous  s ta t ionary  s late  of the laser  radiat ion field (51) comprises  the 

photonic Bose condensa te ,  which can be considered a superf luid quantum state of the radiat ion field with the lowest 

e n e r g y .  W i t h  p a s s a g e  t h r o u g h  bifurcat ion point R 1 , the superf lu id  s ta te  of the mul t ipar t ic le  quantum sys tem 

becomes uns table ,  and  an orb i ta l ly  quant ized state of the radia t ion field is excited. 

At the resonance  point (69), d ispers ion of the wave package that descr ibes  the vortex field vanishes.  Due 

to this fact, the orb i ta l ly  quant ized  s tate  of the radia t ion field is descr ibed  with high accuracy by express ion  (52) 

in the point  of vortex resonance  6m = 0. It follows from the theory presented  that vortex s tate  (52) is phys ica l ly  

identical  to quant ized vortex lines in superf luid He II and Abr ikosov 's  lines in type- l I  superconductors .  Indeed ,  

the resonance  vortices descr ibed  by express ion (52) are  mult iphoton s ta tes  of the radia t ion field with all quanta  in 

orbi ta l  spiral  s ta te  (30). Thus ,  vortex state (52) is the Bose condensa te  of orbi tal  spiral  photons (30). 
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Numerical solution of the system of Eqs. (39) and (40) has shown that for rather high values of R, when 

a considerable number of vortices is created, a stationary regime that comprises a vortex lattice with a square cell 

can be established in the active laser medium. In such a multivortex lattice, neighboring vortices have opposite 

topological charges m = +-1. This vortex photonic lattice is in many ways similar in its properties to the vortex 

lattice formed by Cooper pairs in type-lI superconductors [10 ]. 

The fact that the lattice is square in the former case and triangular in the latter case is explained by the 

difference in interactions. Thus, the existence of a vortex lattice in an active laser medium can be considered as 

an additional substantiation of photonic superfluidity, which I have called type-ll l  superfluidity [11, 12 ]. 

The author is grateful to V. M. Volkov and I. E. Tralle for fruitful discussions of the results. 

N O T A T I O N  

E, strength of the electric field; N;, photon density; 0), velocity potential; v), local velocitv of the radiation 
field;/z:., chemical potential of photons; F,i, circulation of the velocity; m), topological charge; f~,!, angular velocitv 

of the radiation field; E, complex-valued strength of the electric field; F, complex-valued polarization of the active 

laser medium; c~, radiation losses in the laser; 7, transverse relaxation time; r162 longitudinal relaxation time; d0, 

detuning from the frequency of the quantum transition; (2, inversion of laser levels; ~0, pumping parameter  of the 

laser energy; ,r, transverse wave number of photons; q, longitudinal wave number of photons; w, frequency of light; 

P, power of laser radiation; cD, phase of the electromagnetic field. 
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